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Abstract. We consider the three-dimensional three-wave resonance equation using a bilinear
approach to investigate a broad class of solutions. Solutions are obtained in a Grammian form,
and their relationship to Kaup’s solutions examined.

1. Introduction

Of the nonlinear interactions possible in three dimensions, possibly the simplest is the three-
wave resonant interaction. If we consider two colliding waves whose envelopes vary slowly
compared with their central frequencies (w1, w2), it is possible for a third wave to exist
which has a composite frequency (w3 = w1 ± w2). It may be viewed as the two original
waves interacting (beating) with one another, giving rise to the third wave. Given the
frequency of the third is a linear combination of the first two, the waves can ‘phase lock’
allowing for growth and continuation of the new wave. Without this feature the third wave
would quickly disperse after several oscillations. For a full discussion on the derivation of
the equations and the physical significance see [5].

The three-wave resonant interaction (3WRI) has been extensively investigated.
Originally this work was in one spatial dimension rather than the full three-dimensional
problem. An inverse-scattering transform for the homogenous medium 3WRI in one space
dimension and time was developed by Zakharov and Manakov [20, 21] and Kaup [10].
A full discussion of the evolution in time and one-spatial dimension, in a homogenous
medium of the 3WRI was made by Kaupet al [15] and for the inhomogeous medium case
by Reiman [16].

The above work led the way for a study of the full three-dimensional three-wave
resonant (3D3WR) interaction, which arises as the compatability condition between two 3×3
differential systems. The inverse-scattering problem was first formulated by Zakharov [19]
who found a particular class of solutions, and then Craik [4], independently, investigated
in detail some special cases of these solutions. These solutions came to be known as
‘lumps’. Ablowitz and Haberman’s work [1] led Cornille [3] to reformulate the inverse-
scattering problem with all three coordinates on the same footing and Kaup [12, 11, 14]
used characteristic coordinates to give explicitly the general inverse-scattering solution and
also an infinite set of conservation laws.

The lump solutions obtained by Zakharov and later Craik are different from the soliton
solutions found in the one-dimensional inverse-scattering, however, they maintain some
similarities. The one-dimensional soliton solutions are derived from separable kernels [15]
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and hence give rise to a closed form of solution. Similarly for lump solutions the kernels
are also separable [11] and again we have a closed form of solutions. This is often used as
a definition of lump solutions. Further in an analogous way to the construction ofn-soliton
solutions, one can constructn-lump solutions. Indeed this is possible from a Bäcklund
transformation as shown by Kaup [13].

However, soliton solutions in one-dimensional inverse-scattering theories always
correspond to a pure bound-state spectrum and there is a relationship between the amplitude
and width so that only one is truely independent. For lump solutions this connection is lost
and the profile may be quite arbitrary. Lump solutions may be thought of as having more
freedom in their profile.

In this paper we investigate features of this three-dimensional three-wave interaction
problem from the point of view of the bilinear method and Grammians. The equations
and solutions described originally by Kaup can be easily recast in terms of a bilinear
formulation. The corresponding equations correspond to lowest-weight equations in the KP
three-component hierarchy.

In section 2 we look briefly at the system of equations and the associated linear problem.
Singularity analysis is carried out and the resulting expansion allows us to generate the
Bäcklund transformation which leads to the bilinear form. The connection between this
and Kaup’s B̈acklund transformation is noted. In section 3 we consider the 1 and 2 lump
solutions obtained by Kaup via the Bäcklund transformation [13] and rewrite these in a
Grammian form, which we can then generalize to obtain ann-lump solution. Section 4
gives a direct proof of solutions in the Grammian form. This leads us to examine, in
section 5 a set of more general solutions. Finally in section 6 we look at some explicit
examples.

2. The three-dimensional three-wave interaction

2.1. The system of equations

The 3D3WR equations [12] take the form

∂qi

∂Xi
= γiq∗j q∗k

∂q∗i
∂Xi
= γiqjqk (2.1)

wherei, j, k are cyclic and equal to 1, 2, 3 and∗ means complex conjugation. TheXi are
characteristic coordinates, usually defined by

∂

∂Xi
= −∂t − vi · ∇. (2.2)

Theγ ’s are coupling constants and are scaled to unity in magnitude, i.e.γ = ±1, different
choices for theγ ’s will correspond to reflections. We can therefore, without loss of
generality, setγ1 = γ2 = γ3 = 1. By changing the signs of the fieldsqi one of the
γ ’s can always be set equal to +1, it can then be seen that there are really only two distinct
casesγ1 = γ2 = γ3 = 1 andγ1 = γ2 = −γ3 = 1.

Although time, t , occurs in the system we shall generally be working with the
characteristic coordinates, thus we may think of this system as a stationary system in three-
dimensional space represented by these characteristic coordinates. Alternatively, we can
consider the solution of the system at a point in time to be a cross section through the
three-dimensional space picture. As time progresses this cross section moves,t → −∞
corresponding to the characteristic coordinatesXi → +∞ and t → ∞ corresponding to
Xi →−∞.
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The basic scattering problem [12] is given by

∂ζi

∂Xk
= q∗j ζk

∂ζk

∂Xi
= qj ζi (2.3)

where i, j, k take cyclic values over 1, 2, 3. The integrability condition for (2.3) is the
original nonlinear system (2.1). Kaup points out [12] that this scattering problem is unusual
in that there is no eigenvalue present, thus there are no bound states, so solitons as understood
for one-dimensional systems do not occur. However, localized solutions do occur, and are
referred to as lumps rather than solitons.

2.2. Singularity analysis

For this system the Painlevé analysis can be carried out. We recall that a partial differential
equation (PDE) possesses the Painlevé property when its solutions are single valued about
the movable singularity manifold [18].

In order to perform the Painlevé analysis we start from the initial system (2.1) and
make the ansatz that the variablesqi , q∗i can be expanded about the singularity manifold
ϕ(X1, X2, X3) = 0 as

qi =
∞∑
m=0

qimϕ
m+αi (2.4)

q∗i =
∞∑
m=0

q∗imϕ
m+βi (2.5)

whereϕ, qim and q∗im are all analytic functions ofX1, X2, X3 in the neighbourhood of
ϕ = 0 andαi , βi are integers. A leading order analysis provides

αi = βi = −1 (2.6)

for i = 1, 2, 3. The resonances, that is powers ofm at which arbitary functions enter into
the series, can be calculated. They are

m = −1, 0, 2, 3 (2.7)

with 0 and 2 repeated twice. The resonance atm = −1 represents the arbitrariness of
the singularity manifoldϕ(X1, X2, X3) = 0. While the ‘double’ resonance atm = 0 is
associated with the introduction of two arbitary functions at the lowest level. With some
further checks on consistency it can be shown that the Painlevé property is satisfied and
consequently the equation is expected to be integrable (see appendix for more details).

To generate the B̈acklund transformation and the bilinear form of the equations, we
truncate the series (2.4) and (2.5) at the constant level term [6, 7], that is set

qim = q∗im = 0 for m > 2. (2.8)

Thus we have

qi = qi0

ϕ
+ qi1 (2.9)

q∗i =
q∗i0
ϕ
+ q∗i1 (2.10)

where theqi1 andq∗i1 satisfy the original equations (2.1),

∂qi1

∂Xi
= q∗j1q

∗
k1

∂q∗i1
∂Xi
= qj1qk1 (2.11)
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and

qi0
∂ϕ

∂Xi
= −q∗j0q

∗
k0 q∗i0

∂ϕ

∂Xi
= −qj0qk0 (2.12)

∂qi0

∂Xi
= (q∗j0q

∗
k1+ q∗k0q

∗
j1)

∂q∗i0
∂Xi
= (qj0qk1+ qk0qj1) (2.13)

for i, j, k = 1, 2, 3 and cyclic. Starting with a solutionqi1, q∗i1 we can generate another
solutionqi , q∗i via equations (2.9) and (2.10), as long as equations (2.11)–(2.13) hold. Thus
the above equations (2.9)–(2.13) represent a Bäcklund transformation for the system.

The B̈acklund transformation for this system has previously been written down by Kaup
[13]. Given a solutionqi , to generate another solution̄qi , we use

q̄i = qi + ζ
∗
k ζj

D
(2.14)

where the functionD exists and

∂iD = ∂D

∂Xi
= −ζ ∗i ζi . (2.15)

The ζ ’s come from the scattering problem for the original equation

∂kζi = q∗j ζk (2.16)

∂iζk = qj ζi (2.17)

where, as before, thei, j , k are cyclic. This B̈acklund transformation is indeed the same
as the one generated by truncating the series expansion if we make the identifications

ϕ→ D

qi0→ ζj ζ
∗
k

q∗i0→ ζkζ
∗
j .

(2.18)

2.3. Bilinearization

We can use the Painlevé analysis as a guide to bilinearization by considering the vacuum
solution [6]

qi1 = q∗i1 = 0 (2.19)

in the B̈acklund transformation (2.9) and (2.10) to give

qi = qi0

ϕ
(2.20)

q∗i =
q∗i0
ϕ
. (2.21)

Assumingϕ to be real and substituting equations (2.20) and (2.21) into (2.1) and making
use of Hirota bilinear operators [9], we obtain the following Hirota bilinear form

DXiqi0 · ϕ = q∗j0q
∗
k0 (2.22)

DXiq
∗
i0 · ϕ = qj0qk0. (2.23)

TheDXi are standard Hirota bilinear operators

DXa · b = ∂a

∂X
b − a ∂b

∂X
= aXb − abX. (2.24)
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Instead of using the Painlevé analysis as a guidance to the bilinearization we can directly
bilinearize this system by choosing the following change of variables:

qi = Gi

F
q∗i =

G∗i
F

(2.25)

whereF is understood to be real. This recasts our equations as

DXiF ·Gi = −G∗j G∗k DXiF ·G∗i = −GjGk (2.26)

wherei, j, k are cyclic permutations of 1, 2, 3.
It should perhaps be pointed out at this stage that these equations come straight from the

lowest equations in the three-component KP hierarchy, hence integrability is to be expected.
The form of solution will be theτ -functions from this hierarchy. These in general will take
the form of three-component Wronskians or three-component Grammians. We will take an
explicit look at this later.

3. Solutions

Let us consider the simplest type of solution to such a system. Consider the specific case
where there is only one wave envelope present,q1 say, withq2 = q3 = 0, here the equations
reduce to

∂q1

∂X1
= 0

∂q∗1
∂X1
= 0 (3.1)

this says thatq1 is independent ofX1 and has arbitrary dependence onX2 andX3, thus, to
use the language of Kaup we can think ofq1 as being a ‘tube’ or cylinder extending in the
X1 direction with some profile in theX2 andX3 directions.

In general, however, all three fields will be present in the solution, and they can be
thought of as ‘tubes’ lying in the three characteristic directions. In regions where there is
an overlap of these ‘tubes’ interactions will occur, however, as theXi →±∞ the envelopes
will separate and the solutions will cease from changing. Kaup looked at such solutions via
inverse-scattering methods [12, 11, 13].

3.1. 1-lump solution

3.1.1. Non-degenerate kernel case.To generate the 1-lump solution we start with the trivial
solution qi = 0, ∀i = 1, 2, 3. We then use the B̈acklund transformation [13] to generate
another solution, solving first for theζ ’s, then calculatingD. We have

ζi = gi(Xi) (3.2)

D = β +
3∑
i=1

8i(Xi). (3.3)

whereβ is a real constant and

8i(Xi) =
∫ ∞
Xi

g∗i (u)gi(u) du (3.4)

the gi ’s are arbitrary functions of the single variablesXi . Without loss of generality we
may setβ = 1, the 1-lump solution is then given by

q̄j = g∗i gk
1+∑3

m=18m(Xm)
. (3.5)
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One of the aims of this paper is to relate these solutions to Grammians, in a similar way
to Gilson and Nimmo’s proceedure for the Davey–Stewartson equation [8]. The Grammian
approach being compact and direct, allows a wide class of solutions to be determined. Here
we can write the solution in the following form

qi = Gi

F
q∗i =

G∗i
F

(3.6)

with

F = 1+
3∑

m=1

8m(Xm) = |I +H8| = |F | (3.7)

whereI is the(3× 3) identity matrix,

8 = diag(81,82,83) H =
( 1 1 1

1 1 1
1 1 1

)
. (3.8)

TheG’s can be expressed as bordered determinants

G1 = −

∣∣∣∣∣∣∣
0 0 0 g∗3
g2

g2 F
g2

∣∣∣∣∣∣∣ = −
∣∣∣∣ 0 g

†
3

Hg2 F

∣∣∣∣ (3.9)

G2 = −

∣∣∣∣∣∣∣
0 g∗1 0 0
g3

g3 F
g3

∣∣∣∣∣∣∣ = −
∣∣∣∣ 0 g

†
1

Hg3 F

∣∣∣∣ (3.10)

G3 = −

∣∣∣∣∣∣∣
0 0 g∗2 0
g1

g1 F
g1

∣∣∣∣∣∣∣ = −
∣∣∣∣ 0 g

†
2

Hg1 F

∣∣∣∣ . (3.11)

Similarly we have

G∗i = −
∣∣∣∣ 0 g

†
j

Hgk F

∣∣∣∣ (3.12)

for i, j, k cyclic. Here

g1 = (g1, 0, 0)T g2 = (0, g2, 0)T g3 = (0, 0, g3)
T (3.13)

g
†
1 = (g∗1, 0, 0) g

†
2 = (0, g∗2, 0) g

†
3 = (0, 0, g∗3). (3.14)

3.1.2. Degenerate kernel case.In addition to this solution (the non-degenerate kernel case)
there is, what is called the degenerate kernel case [12]. For the degenerate kernel case the
solution is given by,

qj = g∗i (Xi)gk(Xk)
1−8j(Xj )
D(Xi,Xj ,Xk)

(3.15)

where

8i(Xi) =
∫ ∞
Xi

g∗i (u)gi(u) du (3.16)

and

D = 1−8i8j −8j8k −8k8i + 28i8j8k. (3.17)
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D appears in the denominator of the solution, thus, for non-singular solutions, it can be seen
from the signs of the coefficients occurring inD that we cannot take theg’s as exponentials.
Cornille [3] has shown that these degenerate kernels can admit localized solutions as long
as theqi , i = 1, 2, 3 are localized and the8’s are always strictly less than 1.

Again this can be cast in terms of Grammians as follows

qi = Gi

F
(3.18)

with

F = |I +H8| = |F | (3.19)

whereI is the(3× 3) identity matrix and

8 = diag(81,82,83) H =
( 0 1 1

1 0 1
1 1 0

)
. (3.20)

Thus the structure of the solution (3.19) has not changed, only the form of the matrixH

occuring. TheGi can be expressed as bordered determinants, just as before, but now with
the modifiedH . For example

G1 = −

∣∣∣∣∣∣∣
0 0 0 g∗3
g2

0 F
g2

∣∣∣∣∣∣∣ = −
∣∣∣∣ 0 g

†
3

Hg2 F

∣∣∣∣ (3.21)

i.e.

Gi = −
∣∣∣∣ 0 g

†
k

Hgj F

∣∣∣∣ G∗i = −
∣∣∣∣ 0 g

†
j

Hgk F

∣∣∣∣ . (3.22)

3.2. 2-lump solution

Again using the B̈acklund transformation, a 2-lump solution can be generated from the
1-lump solution. For convenience, especially later on in the paper we shall adapt notation.
Let us rewrite the 1-lump solution:

ζ1 = φ(X1) ζ2 = ψ(X2) ζ3 = σ(X3) (3.23)

811 =
∫ ∞
X1

φ∗φ(u) du 911 =
∫ ∞
X2

ψ∗ψ(u) du 611 =
∫ ∞
X3

σ ∗σ(u) du (3.24)

with

D11 = 1+811(X1)+911(X2)+611(X3). (3.25)

The 1-lump solution is then given by

q1 = ψσ ∗

D11
q2 = σφ∗

D11
q3 = φψ∗

D11
(3.26)

q∗1 =
ψ∗σ
D11

q∗2 =
σ ∗φ
D11

q∗3 =
φ∗ψ
D11

. (3.27)

Also we will introduce

Dij = βij +8ij (X1)+9ij (X2)+6ij (X3) (3.28)

whereβij are constants and

8ij =
∫ ∞
X1

φ∗i φj (u) du 9ij =
∫ ∞
X2

ψ∗i ψj (u) du 6ij =
∫ ∞
X3

σ ∗i σj (u) du. (3.29)
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For the 2-lump solution we leti, j = 1, 2 and can without loss of generality set
β11 = β22 = 1. Then

qi = Gi

F
(3.30)

with

F = D11D22−D12D21

G1 = D22ψ1σ
∗
1 +D12ψ1σ

∗
2 +D21ψ2σ

∗
1 +D11ψ2σ

∗
2

G2 = D22σ1φ
∗
1 +D12σ1φ

∗
2 +D21σ2φ

∗
1 +D11σ2φ

∗
2

G3 = D22φ1ψ
∗
1 +D12φ1ψ

∗
2 +D21φ2ψ

∗
1 +D11φ2ψ

∗
2 .

(3.31)

This solution can also be recast as a Grammian, this will now be a 6× 6 determinant.

qi = Gi

F
(3.32)

with F = |I + H8| = |F |, whereI is the (6× 6) identity matrix,8 is a matrix with
on-diagional(2× 2) blocks and zeros elsewhere,H is a block matrix with nine identical
(2× 2) blocks.

8 =
(
8ij 0

9ij
0 6ij

)
H =

(
B B B

B B B

B B B

)
(3.33)

with

B =
(
β11 β12

β21 β22

)
. (3.34)

TheGi ’s can be expressed as a bordered determinants

G1 = −
∣∣∣∣ 0 σ †

Hψ F

∣∣∣∣ (3.35)

G2 = −
∣∣∣∣ 0 φ†

Hσ F

∣∣∣∣ (3.36)

G3 = −
∣∣∣∣ 0 ψ†

Hφ F

∣∣∣∣ (3.37)

where

φ = (φ1, φ2, 0, 0, 0, 0)T ψ = (0, 0, ψ1, ψ2, 0, 0)T σ = (0, 0, 0, 0, σ1, σ2)
T

(3.38)

φ† = (φ∗1, φ∗2, 0, 0, 0, 0) ψ† = (0, 0, ψ∗1 , ψ
∗
2 , 0, 0) σ † = (0, 0, 0, 0, σ ∗1 , σ

∗
2 ).

(3.39)

3.3. n-lump solution

The reason that we have taken time to change the notation is that now it is possible to
postulate a simple form for then-lump solution which has the structure of a three-component
Grammian.

qi = Gi

F
(3.40)

with

F = |I +H8| = |F | (3.41)
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whereI is the (3n × 3n) identity matrix,8 is a matrix with on-diagional(n × n) blocks
and zeros elsewhere,H is a block matrix with nine identical(n× n) blocks.

8 =
(
8ij 0

9ij
0 6ij

)
H =

(
B B B

B B B

B B B

)
(3.42)

with

Bij = βij i, j = 1 . . . n. (3.43)

TheG’s can be expressed as bordered determinants

G1 = −
∣∣∣∣ 0 σ †

Hψ F

∣∣∣∣ (3.44)

G2 = −
∣∣∣∣ 0 φ†

Hσ F

∣∣∣∣ (3.45)

G3 = −
∣∣∣∣ 0 ψ†

Hφ F

∣∣∣∣ (3.46)

where

φ = (φ1, . . . φn; 0, . . .0; 0, . . .0)T (3.47)

ψ = (0, . . .0;ψ1, . . . ψn; 0, . . .0)T (3.48)

σ = (0, . . .0; 0, . . .0; σ1, . . . σn)
T (3.49)

φ† = (φ∗1, . . . φ∗n; 0, . . .0; 0, . . .0) (3.50)

ψ† = (0, . . .0;ψ∗1 , . . . ψ∗n ; 0, . . .0) (3.51)

σ † = (0, . . .0; 0, . . .0; σ ∗1 , . . . σ ∗n ). (3.52)

4. Direct proof of the solution

For a direct proof of the solution we use a Jacobi identity [2]. The basic Jacobi identity is
given as follows: consider anN × N matrix A we writeAi,...,jk,...,l for the minor obtained by
omitting theith, . . . , j th rows and thekth, . . . , lth columns, in which notation the Jacobi
identity is

|A|Ai,jk,l =
∣∣∣∣Aik A

j

k

Ail A
j

l

∣∣∣∣ . (4.1)

Here we need the following form of the identity:

|F |
∣∣∣∣∣∣

0 0 φ†

0 0 σ †

Hφ Hψ F

∣∣∣∣∣∣ =
∣∣∣∣ 0 φ†

Hφ F

∣∣∣∣ ∣∣∣∣ 0 σ †

Hψ F

∣∣∣∣− ∣∣∣∣ 0 φ†

Hψ F

∣∣∣∣ ∣∣∣∣ 0 σ †

Hφ F

∣∣∣∣ . (4.2)

We can show that the derivatives we require can all be expressed in terms of bordered
determinants. These expressions arise because, in general, for anN × N matrix A whose
entriesaij are such that

∂aij

∂X
= αiβj (4.3)
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the derivative of the determinant can be written as

∂|A|
∂X
=

N∑
i,j=1

(−1)i+jαiβjAij = −

∣∣∣∣∣∣∣∣
0 β1 . . . βN
α1
... A

αN

∣∣∣∣∣∣∣∣ . (4.4)

Thus, we can show that

∂F

∂X1
=
∣∣∣∣ 0 φ†

Hφ F

∣∣∣∣ (4.5)

and

∂G1

∂X1
= −

∣∣∣∣∣∣
0 0 φ†

0 0 σ †

Hφ Hψ F

∣∣∣∣∣∣ . (4.6)

Thus (4.2) is actually

−F ∂G1

∂X1
= − ∂F

∂X1
G1−G∗2G∗3 (4.7)

this is precisely the bilinear equation

DX1F ·G1 = −G∗2G∗3. (4.8)

Similar identities to (4.2) exist, these give us the other bilinear equations.

5. A more general solution

The proof that then-lump solutions satisfy the equations, actually applies more generally.
The proof will still hold for any constant Hermitian matrix you may wish to take forH . In
general, the formF = |I +H8|, where8 could be a block matrix where each block may
not necessarily be of the same size will still be a solution. Thus

qi = Gi

F
q∗i =

G∗i
F

(5.1)

will be a solution of the system, with

F = |I +H8| = |F | (5.2)

whereI is the(n1+ n2+ n3)× (n1+ n2+ n3) identity matrix,H is a Hermitian matrix,8
is an (n1 + n2 + n3)× (n1 + n2 + n3) matrix with non-zero on-diagional blocks and zeros
elsewhere

8 =
(
8ij 0

9kl
0 6mn

)
i, j = 1 . . . n1

k, l = 1 . . . n2

m, n = 1 . . . n3.

(5.3)

TheG’s can be expressed as bordered determinants

G1 = −
∣∣∣∣ 0 σ †

Hψ F

∣∣∣∣ G∗1 = −
∣∣∣∣ 0 ψ†

Hσ F

∣∣∣∣ (5.4)

G2 = −
∣∣∣∣ 0 φ†

Hσ F

∣∣∣∣ G∗2 = −
∣∣∣∣ 0 σ †

Hφ F

∣∣∣∣ (5.5)

G3 = −
∣∣∣∣ 0 ψ†

Hφ F

∣∣∣∣ G∗3 = −
∣∣∣∣ 0 φ†

Hψ F

∣∣∣∣ (5.6)
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where

φ = (φ1, . . . φn1; 0, . . .0; 0, . . .0)T (5.7)

ψ = (0, . . .0;ψ1, . . . ψn2; 0, . . .0)T (5.8)

σ = (0, . . .0; 0, . . .0; σ1, . . . σn3)
T (5.9)

φ† = (φ∗1, . . . φ∗n1
; 0, . . . .0; 0, . . .0) (5.10)

ψ† = (0, . . .0;ψ∗1 , . . . ψ∗n2
; 0, . . .0) (5.11)

σ † = (0, . . .0; 0, . . .0; σ ∗1 , . . . σ ∗n3
). (5.12)

This is quite a broad class of solutions, however, we have to keep in mind that theF we
actually want to take, should be non-zero everywhere, otherwise the solutions will contain
singularities.

6. Examples

The essential difference between soliton solutions and lump solutions is the absence of
(discrete) spectral parameters in the inverse-scattering theory. This difference manifests
itself in the functionsφi, ψi and σi . In the case of related theories with solitons these
functions contain the spectral parameters and are always restricted to obey some linear
equation relating derivatives of the different independent variables together, here there is
no such restriction. In this section we shall look at solutions to some simple cases.

6.1. The (1, 1, 1) case

EvaluatingF in (5.2) gives

F = 1+ h11811+ h22911+ h33611+
∣∣∣∣h11 h12

h21 h22

∣∣∣∣811911+
∣∣∣∣h11 h13

h31 h33

∣∣∣∣811611

+
∣∣∣∣h22 h23

h32 h33

∣∣∣∣911611+
∣∣∣∣∣h11 h12 h13

h21 h22 h23

h31 h32 h33

∣∣∣∣∣811911611 (6.1)

and from (5.4)

G1 = ψ1σ
∗
1

(
h32+

∣∣∣∣h11 h12

h31 h32

∣∣∣∣811

)
(6.2)

with the811, 911, 611 given by (3.24),n1 = n2 = n3 = 1 andH as

H =
(
h11 h12 h13

h21 h22 h23

h31 h32 h33

)
. (6.3)

6.1.1. Localized profiles. If φ1, ψ1 andσ1 are taken to be localized functions, for instance
Lorentzians or Gaussians, their asymptotic behaviour is simple to describe. As

X1→+∞ 811→ 0 φ1→ 0 φ∗1 → 0

X1→−∞ 811→ 8−∞ φ1→ 0 φ∗1 → 0
(6.4)
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where8−∞ is a constant. Similar sort of behaviour occurs for911 and611 asX2, X3→
±∞. As X1→∞

F → 1+ h22911+ h33611+
∣∣∣∣h22 h23

h32 h33

∣∣∣∣911611 (6.5)

G1→ h32ψ1σ
∗
1 (6.6)

asX1→−∞
F → a + b911+ c611+ d911611 (6.7)

G1→ eψ1σ
∗
1 (6.8)

wherea, b, c, d, e are constants

a = 1+ h118−∞ (6.9)

b = h22+
∣∣∣∣h11 h12

h21 h22

∣∣∣∣8−∞ c = h33+
∣∣∣∣h11 h13

h31 h33

∣∣∣∣8−∞ (6.10)

d =
∣∣∣∣h22 h23

h32 h33

∣∣∣∣+
∣∣∣∣∣h11 h12 h13

h21 h22 h23

h31 h32 h33

∣∣∣∣∣8−∞ (6.11)

e = h32+
∣∣∣∣h11 h12

h31 h32

∣∣∣∣8−∞. (6.12)

We can chooseφ,ψ, σ for instance as,

φ1 = c1e−(X1−X0
1)

2
ψ1 = c2e−(X2−X0

2)
2

σ1 = c3e−(X3−X0
3)

2
(6.13)

wherec1, c2, c3, X
0
1, X

0
2, X

0
3 are real constants. Theq1-field will take the form of a filled in

‘tube’ in three-dimensional space in the direction of theX1-axis, asymptotically for large
X1 the cross section profile will be determined by the functionsψ1, σ1. In this particular
case we obtain a lump. Similarly atX1 large and negative the profile will again be a
lump of different size. The ‘interaction’ region can be considered to be the region near the
intersection of the coordinate axes. In figure 1, we showq1 plotted in theX2X3-plane for
fixedX1 with

H =
 1 1

2
1
2

1
2 1 1

2
1
2

1
2 1

 . (6.14)

As, in general the cross section profile of a(1, 1, 1)-solution is arbitrary, by choosing
the φ1, ψ1 and σ1’s differently this simple solution could have a much more interesting
appearence, however, the basic character of the ‘tube’ structure in theX1 direction will not
change. This behaviour is similar to the lumps as described by Kaup [13].

6.1.2. Non-localized profiles.As an alternative to choosing our functionsφ1, ψ1, σ1 as
above we could choose functions which don’t decay as theXi → ±∞, we shall look at
exponentials, we would expect the behaviour here to mimic more closely that of solitons.
Choose

φ1 = e−p(X1−p) ψ1 = e−q(X2−q) σ1 = e−r(X3−r). (6.15)

With the way our boundary conditions have been set up earlier it is necessary to choose
Re(p),Re(q),Re(r) > 0 (however, with some reconsideration of the boundary conditions
these could be taken negative). Now the choice ofH in our solution is more critical, we
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Figure 1. The q1-field, plotted in theX2X3-plane for
fixed X1 = −5, φ1 = exp(−X2

1)/2, ψ1 = exp(−X2
2)/2,

σ1 = exp(−X2
3)/2.

can obtain solutions that are localized or are ‘ridge’ like. For this exponential case the
asymptotics are

X1→+∞ 811→ 0 φ1→ 0 φ∗1 → 0

X1→−∞ 811→∞ φ1→∞ φ∗1 →∞
(6.16)

thus asX1→+∞

F → 1+ h22911+ h33611+
∣∣∣∣h22 h23

h32 h33

∣∣∣∣911611 (6.17)

G1→ h32ψ1σ
∗
1 (6.18)

asX1→−∞
F → a + b911+ c611+ d911611 (6.19)

G1→ eψ1σ
∗
1 (6.20)

wherea, b, c, d, e are constants

a = h11 b =
∣∣∣∣h11 h12

h21 h22

∣∣∣∣ c =
∣∣∣∣h11 h13

h31 h33

∣∣∣∣ (6.21)

d =
∣∣∣∣∣h11 h12 h13

h21 h22 h23

h31 h32 h33

∣∣∣∣∣ e =
∣∣∣∣h11 h12

h31 h32

∣∣∣∣ . (6.22)

If the coefficients of the911, 611, 911611 and the constant term are all present inF the
solution will look like a lump in theX2X3-plane, for fixedX1. This lump will change only
in the interaction region (aroundX1 = 0). This would be obtained with anH such as

H =
( 1 α β

α∗ 1 η

β∗ η∗ 1

)
(6.23)

where|α|, |β|, |η| are all strictly less than 1 (see figure 2).
In figure 3 a surface of constant density ofq1-field has been plotted in three-dimensional

space, this looks like a ‘tube’ parallel to theX1-axis.
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Figure 2. The q1-field, plotted in theX2X3-plane for
fixed X1 = 10, φ1 = exp(−X1), ψ1 = exp(−X2), σ1 =
exp(−X3), h11 = h22 = h33 = 1, h12 = h23 = h31 = 1

2 .

Figure 3. The q1-field, here we have plotted the surface|q1| = 0.13 in X1X2X3-space,φ1 =
exp(−X1), ψ1 = exp(−X2), σ1 = exp(−X3), h11 = h22 = h33 = 1, h12 = h23 = h31 = 1

2 .

In the case of the original lumps described by Kaup (hij = 1, ∀ij = 1, 2, 3) some of
the coefficients of911 etc will be missing, this will have the effect of producing a ridge
(see figure 4) asX1→+∞. At X1 = −∞ this ridge will disappear since

e =
∣∣∣∣h11 h12

h31 h32

∣∣∣∣ = ∣∣∣∣ 1 1
1 1

∣∣∣∣ = 0. (6.24)

It is also possible to set the boundary conditions up differently so as to obtain plane-wave
solutions, i.e. solutions where the ridge does not decay to zero in either direction. However,
for simplicity we shall not discuss these solutions here.

6.2. The (2,1,1) case

The (2, 1, 1) case is formed by introducing an extra arbitrary functionφ2(X1) into the
solution. This does not appear to correspond to the solutions discussed by Kaup via inverse-
scattering or B̈acklund transformations. The introduction of the function introduces extra
features into the solutions. The structure will be reminicant of say the (2,1)-dromion solution
in the Davey–Stewartson equation. The functionF will now be a 4× 4 determinant. As
before, the precise terms present will determine the shape of the solution.

6.2.1. Localized profiles. Choosing localized functions

φ1 = e−(X1−α)2 φ2 = e−(X1−β)2 ψ1 = e−(X2−X0
2)

2
σ1 = e−(X3−X0

3)
2

(6.25)

whereα, β,X0
2, X

0
3 are constants. Looking at theq2-field we observe, in three-dimensional

space, two ‘tubes’ centred on(X1, X3) = (α,X0
3) and (β,X0

3) lying in the direction of the
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Figure 4. The q1-field, plotted in theX2X3-plane for
fixed X1 = 10, φ1 = exp(−X1), ψ1 = exp(−X2),
σ1 = exp(−X3), hij = 1 for ij = 1, 2, 3.

Figure 5. The q2-field, plotted in theX1X3-plane
for fixed X2 = 10, φ1 = exp(−(X1 − 2)2), φ2 =
exp(−(X1 + 2)2), ψ1 = exp(−X2

2), σ1 = exp(−X2
3),

hij = 1 for i, j = 1, 2, 3.

Figure 6. q2-field, surfaceq2 = 0.12 plotted in
three-dimensional space,φ1 = exp(−(X1 − 2)2),
φ2 = exp(−(X1 + 2)2), ψ1 = exp(−X2

2), σ1 =
exp(−X2

3), hij = 1 for i, j = 1, 2, 3.

X2-axis. Theq3-field is similar with the ‘tubes’ lying in the direction of theX3-axis. The
q1-field has just one ‘tube’, however, there are interactions aroundX1 = α andX1 = β.
These solutions are shown in figures 5 and 6.

6.2.2. Non-localized profiles.Here as before the values ofhij will determine the kind of
solution. Taking exponentials

φ1 = e−p1(X1−p1) φ2 = e−p2(X1−p2) ψ = e−q(X2−q) σ = e−r(X3−r) (6.26)

and plotting, for instanceq2 we can obtain a solution that appears to be two lumps in the
X1X3-plane, ie two ‘tubes’ parallel to theX2-axes. Plottingq1 the solution here is one ‘tube’
parallel to theX1 axis. This is similar to the localized profiles case. Again by chosingH

such that several minors vanish we can also get ridge-type solutions (see figure 7).

6.3. The(l, m, n) case

In general these solutions will take the form of multiple lumps or ridges. The number of
lumps will depend on the values ofl, m, n. For instance in the least degenerate cases the
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Figure 7. The q2-field, plotted in theX1X3-plane
for fixed X2 = 10, φ1 = exp(−(X1 − 1)), φ2 =
exp(−2(X1 − 2)), ψ = exp(−X2), σ = exp(−X3),
h11 = h13 = h22 = h24 = h33 = h44 = 1, h12 =
h14 = h23 = h34 = 0.

q1-field will havem×n lumps, if viewed inX1 = constant plane, with ‘interaction’ regions
occuring atl different values ofX1.

7. Conclusions

The aim of this paper was to investigate a broad class of solutions to the 3D3WR interaction.
The types of solutions can be broadly catogorized into two classes, lump solutions and ridge
solutions. The lump solutions arise from either choosing our basic functions as localized or
by choosing our matrixH so as the coefficients of all the possible terms inF andG are
present. The ridge solutions are essentially resonant solutions where by choice of a specific
H not all the coefficients are present. The class of solutions presented here includes the
‘lump’ solutions of Kaup.
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8. Appendix. The Painlev́e analysis

For this system the Painlevé analysis can be carried out. We recall that, informally, one
says that a PDE possesses the Painlevé property when it’s solutions are single valued about
the movable singularity manifold [18].

In order to perform the Painlevé analysis we start from the system (2.1)

∂qi

∂Xi
= q∗j q∗k (8.1)

∂q∗i
∂Xi
= qjqk (8.2)
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wherei, j, k are cyclic and equal to 1, 2, 3 and∗ means complex conjugation. Theqi are
functions of theXj .

Now we make the ansatz that the variablesqi , q∗i can be expanded about the singularity
manifoldϕ(X1, X2, X3) = 0 as

qi =
∞∑
m=0

uimϕ
m+αi (8.3)

q∗i =
∞∑
m=0

vimϕ
m+βi (8.4)

whereϕ, uim andvim are all analytic functions of theXi , in the neighbourhood ofϕ = 0
andαi , βi are integers.

Inserting (8.3) and (8.4) into equations (8.1) and (8.2) a leading-order analysis provides

αi = βi = −1 (8.5)

for all i, with

∂ϕ

∂Xi
= −vj0vk0

ui0
(8.6)

∂ϕ

∂Xi
= −uj0uk0

vi0
. (8.7)

From equations (8.6) and (8.7) we may choose two of theui0, vi0 (u30 and v10 say) as
arbitary functions and then

u10 = 1

v10

∂ϕ

∂X2

∂ϕ

∂X3
(8.8)

u20 = − v10

u30

∂ϕ

∂X1
(8.9)

v20 = −u30

v10

∂ϕ

∂X3
(8.10)

v30 = 1

u30

∂ϕ

∂X2

∂ϕ

∂X1
. (8.11)

We obtain the resonances, that is values ofm at which arbitary functions enter into the
series, by substituting (8.3) and (8.4) into equations (8.1) and (8.2) retaining leading order
terms only. As a result, we obtain the matrix equation

[M][V ] = 0 [V ]T = [u1m, u2m, u3m, v1m, v2m, v3m] (8.12)

for the lowest-order coefficients, where

[M] =


P1 0 0 0 −v30 −v20

0 P2 0 −v30 0 −v10

0 0 P3 −v20 −v10 0
0 −u30 −u20 P1 0 0
−u30 0 −u10 0 P2 0
−u20 −u10 0 0 0 P3

 (8.13)

with Pi = (m − 1) ∂ϕ
∂Xi

for i = 1, 2, 3. The resonances are obtained when detM = 0,
which yields the resonancesm = −1, 0, 2, 3 with 0 and 2 repeated twice. The resonance at
m = −1 represents the arbitariness of the singularity manifoldϕ(X1, X2, X3) = 0. While
the ‘double’ resonance atm = 0 is associated with the arbitary functionsu30 andv10.
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In order to check the existence of arbitary functions at the other resonances we use
the Laurent expansion of (8.3) and (8.4) in equations (8.1) and (8.2). Now collecting the
coefficients of (ϕ−1, ϕ−1, ϕ−1, ϕ−1, ϕ−1, ϕ−1) we obtain the set of equations

∂ui0

∂Xi
− [vj0vk1+ vj1vk0] = 0 (8.14)

∂vi0

∂Xi
− [uj0uk1+ uj1uk0] = 0. (8.15)

Similarily, collecting the coefficients of (ϕ0, ϕ0, ϕ0, ϕ0, ϕ0, ϕ0), we obtain

∂ui1

∂Xi
+ ui2 ∂ϕ

∂Xi
− [vj0vk2+ vj2vk0+ vj1vk1] = 0 (8.16)

∂vi1

∂Xi
+ vi2 ∂ϕ

∂Xi
− [uj0uk2+ uj2uk0+ uj1uk1] = 0. (8.17)

Finally at (ϕ1, ϕ1, ϕ1, ϕ1, ϕ1, ϕ1)

∂ui2

∂Xi
+ 2ui3

∂ϕ

∂Xi
− [vj0vk3+ vj3vk0+ vj1vk2+ vj2vk1] = 0 (8.18)

∂vi2

∂Xi
+ 2vi3

∂ϕ

∂Xi
− [uj0uk3+ uj3uk0+ uj1uk2+ uj2uk1] = 0. (8.19)

To show the above equations have the required number of arbitary functions becomes
tedious for the general manifold. We adapt the Kruskal ansatz [17]. By assuming
ϕ(X1, X2, X3) = X1+ ψ(X2, X3) the calculations are somewhat simpler.

Solving equations (8.14) and (8.15) we can determineui1 and vi1 uniquely, givenui0
and vi0 (i = 1, 2, 3). Solving (8.16) and (8.17) by repeated substitution we arrive at two
arbitary functions,u32 andv22 say, providing

v10

[
∂v21

∂X2
+ u30

∂u11

∂X1
− u30v21v31− u31u11

]
−u30v20

[
∂u21

∂X2
+ v30

∂v11

∂X1
− u21u31v30− v31v11

]
= 0 (8.20)

u10

[
∂u31

∂X3
+ v20

∂v11

∂X1
− v20u21u31− v11v21

]
−u30v20

[
∂v31

∂X3
+ u20

∂u11

∂X1
− u20v21v31− u11u21

]
= 0 (8.21)

are both satisfied. With a little algebra this is shown to be the case. So the ‘double’
resonance atm = 2 corresponds to the arbitariness ofu32 and v22, with u12, u22, v12 and
v32 in terms of previously determined functions.

For (8.18) and (8.19) we find thatv33 is arbitary providing the following is true

g3+ u20f1

2
+ u20v30

3∂ϕ/∂X2

[
g2+ u30f1

2

]
+ 2u10

3∂ϕ/∂X2

[
f2+ v30g1

2

]
− v20

3

×
[
f2+ v30g1

2

]
− ∂ϕ/∂X2

u2
30

[
f3+ v20g1

2
+ 2v10

3∂ϕ/∂X2

[
g2+ u30f1

2

]]
= 0

(8.22)

with fi = ∂ui2
∂Xi
− vj1vk2− vj2vk1 andgi = ∂vi2

∂Xi
− uj1uk2− uj2uk1. Again this can be shown

to be the case.
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So the solutionqi , q∗i of equations (8.3) and (8.4) admits the required number of
arbitrary functions without the introduction of movable critical manifolds. Hence the
Painlev́e property is satisfied for (8.1) and (8.2).
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